
1

Using Immunity Debugger
to Write Exploits

Security Research

Dave Aitel, Nicolas Waisman
dave@immunityinc.com

nicolas.waisman@immunityinc
.com

2

Who am I?

CTO, Immunity Inc.

Responsible for new product development

− Immunity Debugger

− SILICA

− Immunity CANVAS

3

Software companies now
understand the value of security

Over the past few years regular users have
become more aware of security problems

As a result 'security' has become a valuable
and marketable asset

Recognizing this, the computer industry has
invested in both hardware and software
security improvements

4

Immunity Debugger is a
strategic answer to defensive

advances
ASLR, NX, /gS and high levels of automated
and manual code auditing have raised the
bar significantly

Attackers operate at a distinct disadvantage

− No source code or internal documentation on
structures and protocols

− Vulnerabilities must be created into reliable
exploits

5

But attackers have their own
resources

Used to working in small teams

Broad range of knowledge (Unix hackers
that know Win32, etc)

Exploit development knowledge is often not
fed back to defensive teams, allowing for
knowledge leadership over a long time
period

− i.e. new bug classes and attack surfaces

6

Attackers will defeat the current
generation through profound

and rapid tool innovation

Interfaces

Analysis engines

Integration into existing tool-sets

Teamwork and coordination

7

Better interfaces save valuable time

WinDBG-
like

command
line

Pure-
Python
Graphi

ng
Usable

GUI

8

Python integration offers
useful analysis

safeseh discovery

stack/heap variable sizing

most importantly – custom automated binary
analysis can be written cheaply and easily!

Static and runtime analysis

9

Existing toolsets are also in
Python

Python x86 emulators

Python exploit frameworks

Python web application analysis

PEID

Non-python toolkits can be accessed easily
via Sockets or XML-RPC

10

Hackers already work in teams...

But their tools don't – yet

Ongoing efforts include

− SVN + Debugger

− Portable function fingerprints

− Global RE database

While previous efforts have broken ground
in team binary analysis, in a year, this will
be the default mode of operation

11

Two examples of how Immunity
Debugger changes assessment

and exploitation

File Include/SQL Injection bugs

Heap Overflows

12

SQL Injection/File Include

Traditionally web applications are looked at
via code review or remote blind assessment
− But complexity is rising and closed source modules are

common

With ID's sql_hooker.py and sqllistener.py
− All SQL Queries get sent to the attacker via XML-RPC

− Python lets you filter on only interesting results at server
side

13

Heap overflows are dead,
long live heap overflows

Common technique for reliable exploitation
of heap overflows is the write4 primitive

OS Vendors are well aware of this

14

And so... heap protection has been introduced

Windows XP SP2, Windows 2003 SP1 and Vista
introduced different heap validity checks to
prevent unlink() write4 primitives

Similar technologies are in place in glibc in
Linux

There are no generic ways to bypass the new
heap protection mechanisms
− The current approaches have a lot of requirements: How do we

meet these requirements?

15

XP SP2 makes our work hard

Windows XP SP2 introduced the first
obvious protection mechanism
− unlinking checks:

blink = chunk->blink
flink = chunk->flink

if blink->flink == flink->blink
and blink->flink == chunk

16

and harder...
Windows XP SP2 introduced the first
obvious protection mechanism
− unlinking checks:

Flink

-BL Chunk-

Blink

Flink

-FL Chunk-

Blink

Flink

-Chunk-

Blink
Chunk been

unlinked

????????

17

XP SP2 (and Vista) introduced more
heap protections

− Low Fragmentation Heap Chunks:

metadata semi-encryption

subsegment = chunk->subsegmentcode
subsegment ^= RtlpLFHKey
subsegment ^= Heap
subsegment ^= chunk >> 3

18

Vista heap algorithm changes make
unlink() unlikely

− Vista Heap Chunks:

metadata semi-encryption and integrity check

*(chunk) ^= HEAP->EncodingKey
checksum = (char) *(chunk + 1)
checksum ^= (char) *(chunk)
checksum ^= (char) *(chunk + 2)

if checksum == chunk->Checksum

19

Checksum makes it hard to predict
and control the header

− Vista Heap Chunks:

metadata semi-encryption and integrity check

SIZE Fl Checks

0 1 2 3

??
??

Xor against
HEAP->EncodingKey

20

Other protections in Vista are not
heap specific

− Other protection mechanisms:
ASLR of pages

DEP (Hardware NX)

Safe Pointers

SafeSEH (stack)

etc.

21

A lot of excellent work has been
done to bypass heap protections

Taking advantage of Freelist[0] split
mechanism (“Exploiting Freelist[0] on XP
SP2” by Brett Moore)

Taking advantage of Single Linked List
unlink on the Lookaside (Oded Horovitz and
Matt Connover)

Heap Feng Shui in Javascript (Alexander
Sotirov)

22

We no longer use heap algorithms
to get write4 primitives

Generic heap exploitation approaches are
obsolete. There is no more easy write4.

− Sinan: “I can make a strawberry pudding with so
many prerequisites”

Application specific techniques are needed

− We use a methodology based on understanding and
controlling the algorithm to position data carefully
on the heap

23

We have been working on this
methodology for years

All good heap overflow exploits have been in
careful control of the heap for years to reach the
maximum amount of reliability

We now also attack not the heap metadata, but
the heap data itself
− Because our technique is specific to each program, generic heap

protections can not prevent it

Immunity Debugger contains powerful new tools
to aid this process

24

Previous exploits already carefully
crafted the heap

Spooler Exploit:
− Multiple Write4 with a combination of the

Lookaside and the FreeList

MS05_025:
− Softmemleaks to craft the proper layout for two

Write4 in a row

Any other reliable heap overflow

These still used write4s from the heap
algorithms themselves!

25

To establish deterministic control
over the Heap you need

Understanding of the allocation algorithm

Understanding of the layout you are
exploiting

A methodology to control the layout

The proper tools to understand and control
the allocation pattern of a process

26

The heap, piece by piece

Understanding the algorithm

− Structures where chunks are held:
Lookaside

FreeList

Understanding Chunk Behaviour

− Coalescing of Chunks

− Splitting of Chunks

27

A quick look at the lookaside

Lookaside
0 1 2 3 4 5

8 bytes

8 bytes

24 bytes

Note: 24 bytes
is the total size.
The actual data
size is: 24 - 8 =
16 byes

28

A quick look at the FreeList
data structure

FreeList

BL FL BL FL
BL FL BL FL
BL FL BL FL
BL FL BL FL

0
1
2
3 BL FL BL FL

24 bytes 24 bytes

BL FL BL FL 4

BL FL BL FL n BL FL BL FL
n*8 bytes

BL FL BL FL BL FL BL FL
1600 bytes 2000 bytes

BL FL BL FL 5

Where n < 128

29

Chunk coalescing: contiguous
free chunks are joined to
minimize fragmentation

Flink/Blin
k

PrevSize

Size

ptr
Flink/Blin

k
Flink/Blin

k

PrevSize

SizeBack_chunk

PSize= *(ptr+2)
Back_chunk = ptr-(PSize*8)
if Back_chunk is not BUSY:

unlink(Back_chunk)

30

Chunks are split into two
chunks when necessary

Chunk splitting happens when a chunk of a
specific size is requested and only larger
chunks are available

After a chunk is split, part of the chunk is
returned to the process and part is inserted
back into the FreeList

31

The life-cycle of a heap overflow

There are fourfour distinct segments in a heap exploit's
life that you need to understand and control:

− Before the overflow

− Between the overflow and a “Write4”

− Between the “Write4” and the function
pointer trigger

− Hitting payload and onward (surviving)

} Might
be the
same

32

Heaps do not all start in the
same layout

With heap overflows it is not always easy to
control how an overwritten chunk will affect the
operation of the heap algorithm

Understanding how the allocation algorithm
works, it becomes apparent that doing three
allocations in a row does not mean it will return
three bordering chunks

Typically this problem is because of “Heap Holes”

33

Heap Holes

Assume

Vulnerable(function)

A = Allocate(0x300);
B = Allocate(0x300);
[...]
Overwrite(A);
fn_ptr = B[4];
fn_ptr(“hello world”);

Chunk is part of
the FreeList[97]

34

Heap Holes

Assuming

Vulnerable(function)

A = Allocate(0x300);
B = Allocate(0x300);
[...]
Overwrite(A);
fn_ptr = B[4];
fn_ptr(“hello world”);

A

35

Heap Holes

Suppose

Vulnerable(function)

A = Allocate(0x300);
B = Allocate(0x300);
[...]
Overwrite(A);
fn_ptr = B[4];
fn_ptr(“hello world”);

A

B

36

Heap Holes

Suppose

Vulnerable(function)

A = Allocate(0x300);
B = Allocate(0x300);
[...]
Overwrite(A);
fn_ptr = B[4];
fn_ptr(“hello world”);

A

B

37

Heap Holes

Suppose

Vulnerable(function)

A = Allocate(0x300);
B = Allocate(0x300);
[...]
Overwrite(A);
fn_ptr = B[4];
fn_ptr(“hello world”);

A

B

38

Two types of memory leaks are
used in heap exploitation

A memleak is a portion of memory that is
allocated but not deallocated throughout
the life of the target

There are two types of memleaks:

− Hard: Memleaks that remain allocated
throughout the entire life of the target

− Soft: Memleaks that remain allocated only for a
set period of time (e.g. a memleak based on one
connection)

39

Several bad coding practises
lead to hard memleaks

Allocations within a try-except block that forget to
free in the except block

Use of RaiseException() within a function before
freeing locally bound allocations (RPC services do
this a lot)

Losing track of a pointer to the allocated chunk or
overwriting the pointer. No sane reference is left
behind for a free

A certain code flow might return without freeing the
locally bound allocation

40

Soft memory leaks are almost as
useful to exploit writers

Soft Memleaks are much easier to find:
− Every connection to a server that is not disconnected,

allocates memory

− Variables that are set by a command and remain so until
they are unset

− Ex:

X-LINK2STATE CHUNK=A allocates
0x400 bytes.

X-LINK2STATE LAST CHUNK=A free
that chunk.

41

We correct our heap layout with
memory leaks

In summary, memleaks will help us do
different things:

− Empty the Lookaside

− Empty the FreeList

− Leaving Holes for a specific purpose

}
Both have the same

objective: to
allow us to have

consecutive chunks

42

Heap Rule #1: Force and control
the layout

Assume again

Vulnerable(function)

A = Allocate(0x300);
B = Allocate(0x300);
[...]
Overwrite(A);
fn_ptr = B[4];
fn_ptr(“hello world”);

43

memleak(768)

Vulnerable(function)

A = Allocate(0x300);
B = Allocate(0x300);
[...]
Overwrite(A);
fn_ptr = B[4];
fn_ptr(“hello world”);

Calculating size:
768 + 8 = 776

776/8 = entry 97

Heap Rule #1: Force and control
the layout

44

memleak(768)

Vulnerable(function)

A = Allocate(0x300);
B = Allocate(0x300);
[...]
Overwrite(A);
fn_ptr = B[4];
fn_ptr(“hello world”);

Heap Rule #1: Force and control
the layout

45

memleak(768)

Vulnerable(function)

A = Allocate(0x300);
B = Allocate(0x300);
[...]
Overwrite(A);
fn_ptr = B[4];
fn_ptr(“hello world”);

Heap Rule #1: Force and control
the layout

46

memleak(768)

Vulnerable(function)

A = Allocate(0x300);
B = Allocate(0x300);
[...]
Overwrite(A);
fn_ptr = B[4];
fn_ptr(“hello world”);

Heap Rule #1: Force and control
the layout

47

memleak(768)

Vulnerable(function)

A = Allocate(0x300);
B = Allocate(0x300);
[...]
Overwrite(A);
fn_ptr = B[4];
fn_ptr(“hello world”);

Heap Rule #1: Force and control
the layout

48

Good exploits are the result
of Intelligent Debugging

With the new requirements for maximum
deterministic control over the algorithm,
exploiting the Win32 heap relies on
intelligent debugging

The need for a debugger that will fill these
requirements arises

49

Immunity Debugger is the first
debugger specifically for
vulnerability development

Powerful GUI

WinDBG compatible commandline

Powerful Python based scripting engine

50

Immunity Debugger's specialized
heap analysis tools

A series of scripts offering everything
needed for modern Win32 Heap exploitation

!heap !searchheap

!funsniff !heap_analyze_chunk

!hippie !modptr

51

Immunity Debugger

Dumping the Heap:

− !heap -h ADDRESS

Scripting example:
pheap = imm.getHeap(heap)

for chunk in pheap.chunks:

chunk.printchunk()

52

53

Searching the heap using Immlib

Search the heap

− !searchheap

what (size,usize,psize,upsize,flags,address,next,prev)

action (=,>,<,>=,<=,&,not,!=)

value (value to search for)

heap (optional: filter the search by heap)

Scripting example:
SearchHeap(imm, what, action, value, heap = heap)

54

Comparing a heap before and
after you break it

Dumping a Broken Heap:

− Save state:

!heap -h ADDRESS -s

− Restore State:

!heap -h ADDRESS -r

55

Heap Fingerprinting

To craft a correct Heap layout we need a
proper understanding of the allocation
pattern of different functions in the target
process

This means there is a need for fingerprinting
the heap flow of a specific function

56

Heap Fingerprinting

!funsniff <address>
− fingerprint the allocation pattern of the given

function

− find memleaks

− double free

− memory freed of a chunk not belonging to our
current heap flow (Important for soft memleaks)

57

58

Automated data type
discovery using Immlib

As we now know overwriting the metadata
of chunks to get a unlink primitive is mostly
no longer viable

The next step of heap exploitation is taking
advantage of the content of chunks

We need straightforward runtime
recognition of chunk content

59

Immunity Debugger offers
simple runtime analysis of heap

data to find data types

String/Unicode

Pointers (Function Pointer, Data pointer,
Stack Pointer)

Double Linked lists

− Important because they have their own unlink()
write4 primitives!

60

Data Discovery

!heap -h HEAP_ADDRESS -d

− See next slide for awesome screenshot of
this in action!

61

62

Data Discovery can be
scripted easily

import libdatatype

dt = libdatatype.DataTypes(imm)

ret = dt.Discover(memory, address, what)

memory memory to inspect

address address of the inspected memory

what (all, pointers, strings,
asciistrings, unicodestrings,
doublelinkedlists, exploitable)

for obj in ret:

print ret.Print()

63

Heap Fuzzing heaps you
discover a way to obtain the

correct layout

Sometimes controlling the layout is not as
easy as you think, even though it sounds
straightforward in theory

From this the concept of Fuzzing the Heap
arises, to help in discovering the correct
layout for your process (manually or
automatically)

64

Heap Fuzzing

!chunkanalizehook

Get the status of a given chunk at a specific
moment. Answers the common questions:

− What chunks are bordering your chunk?

− What is the data in those chunks?

65

Heap Fuzzing

Run the script, Fuzz and get result...

usage:

!chunkanalizehook (-d) -a ADDRES <exp>

-a ADDRESS address of the hook

-d find datatypes

<exp> how to find the chunk

ex: !chunkanalizehook -d -a 0x77fcb703 EBX - 8

66

67

Inject Hook

One of the biggest problems when hooking
an allocation function is speed

Allocations are so frequent in some
processes that a hook ends up slowing down
the process and as a result changing the
natural heap behaviour (thus changing the
layout)

− lsass

− iexplorer

68

Inject Hooks into the target
process speeds things up

This means doing function redirection and
logging the result in the debugger itself
(Avoiding breakpoints, event handling, etc)

Can be done automatically via Immlib

69

Inject Hook

process

VirtualAllocEx

mapped mem

70

Inject Hook

process

InjectHooks

mapped mem

hook code

71

Inject Hook

process

Redirect
Function

mapped mem

hook code

RtlAllocateHeap

RtlFreeHeap

72

Inject Hook

process

Run the program

mapped mem

hook code

RtlAllocateHeap

RtlFreeHeap

log data
[...]

73

Inject Hook

process

Inspect the result

mapped mem

hook code

log data
[...]

74

Inject Hook

Hooking redirection:

− !hippie -af -n tag_name

Hooking redirection as script:

fast = immlib.STDCALLFastLogHook(imm)

fast.logFunction(rtlallocate, 3)

fast.logRegister("EAX")

fast.logFunction(rtlfree, 3)

fast.Hook()

75

The future

In the near future ID will have a heap
simulator that, when fed with heap flow
fingerprints, will tell you which function
calls are needed to get the correct heap
layout for your target process

Simple modifications to existing scripts can
put memory access breakpoints at the end of
every chunk to find out exactly when a heap
overflow happens

− This is great for fuzzers

76

Automating exploitation

Stack overflows

− Automation of simple exploitation techniques
(bad bytes, etc) will be built into VisualSploit+ID

Anti-DEP scripts already working!

Deep protocol analysis and fuzzer
integration on its way

77

Conclusions

Exploiting heap vulnerabilities has become
much more costly

Immunity Debugger offers tools to
drastically reduce the effort needed to write
reliable heap overflows

− On older Windows platforms getting a reliable
write4 the traditional way

− On newer Windows platforms by abusing
program-specific data structures

78

Thank you for your time

Contact us at:

dave@immunityinc.com
nicolas.waisman@immunityinc.com

Security Research Team

